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,' 1Executive Summary

1.1 Scope of This Report

This document reports on the research activities of the UW /NW VLSI Consortium,
for the period 1 October 1985 to 17 March 1986 under sponsorship of the Defense
Advanced Research Projects Agency. The applicable contract for this period is
MDA9O3-85-K-0072.

1.2 Accomplishments

During this period, the Consortium staff refined a number of the design generators
reported on in the last Technical Report. Two substantial design efforts, a 32 bit
microprocessor and a digital filter, utilized several of the generators. Ongoing work
focuses on development of interfaces to verification tools such as the DRO and switch

* level simulators, as well as a functional simulator currently under development. Such
* interfaces allow the verification tools to make use of the correctness of instances

created by generators. -

A preliminary model for generator construction has been proposed. The intent of
the model is to provide a concise specificiation of the circuit from which a number
of output descriptions such as the layout, schematic and transistor netlist may be
derived. The model has been applied to both a decoder and a multiplier generator.

-Work is progressing on a simulation system intended to provide a broad range of
capability - from high level behavioral modeling to low level transistor modeling.
The system is intended to be used to simulate assemblies of circuits produced by
the design generators as well as hand crafted circuits. j-~

The Consortium supported University instruction in VLSI design through use of
Consortium hardware and software design tools. The staff is currently preparing

* for an intensive class in CMOS design, oriented towards industry engineers.
Since June 1985 the Consortium has distributed Release 3.0 of its toolset to over 90
sites. Future releases will include the suite of CMOS design generators described in
the last technical report.
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2 Progress in Design Generators

2.1 Development of a Model for Generator Construction

During the last six months, a model for generator construction has been developed
by Principal Investigator Larry Snyder, Professor Jean-Loup Baer, and graduate
student Meei-Chiueh Liem. Based on a descriptive static language, the model de-
scribes at an abstract level the layout, schematic and transistor netlist of the circuit
being generated. The intent here is to employ a single model at a sufficiently ab-
stract level that it specifies the essential common elements of all three descriptions.
At a lower level of detail these descriptions will of course differ and require different
means of specification.

An initial version of this language has been formulated and applied to several gen-
erators, including a decoder and multiplier. The success of a model such as this
depends upon its range of applicability. Thus our current effort is to apply the lan-
guage to a number of generators in order to determine the adequacy of its descriptive
elements. Once this is accomplished, the details of producing specific descriptions
(e.g. layout, schematic etc.) from the model may be addressed.

-. 2.2 Interfaces to Verification Tools

Generators are useful to designers simply because they produce subcircuits that can
be combined to make a complex IC. The task of assembling the generated subcircuits
and verifiying the resulting IC can also be made more efficient by interfacing the
generator outputs to the verification tools.

The DRC task is one example. By definition the layouts produced by generators are
design rule correct. By making use of this fact, the DRC can be made considerably
more efficient. The type of interface required may be dependent on the methods
employed by the DRC. A hierarchical DRC such as the one in MAGIC employs
timestamps to avoid repeated checking of blocks of layout. If the generator employs
the same timestamping convention, then MAGIC's DRC will be saved the effort
of checking most of the generated block. Our generators currently support this
timestamping convention when generating MAGIC-formatted layouts.

Another type of checker is one that operates on a flattened design. The Carnegie-
Mellon DRC is an example of this variety. An interface in this case is a border

3

,.% . " ~ Sp ,- .]



description that contains all of the layout within a maximum design rule of the
bounding box of the generated block (assuming of course that other circuitry does
not overlap this bounding box). One of our graduate students, Mary Bailey, has
written a program which produces this structure. We are currently evaluating the
improvement in efficiency obtained by substituting this ring structure for the entire
layout. L

Another example of an interface is the transistor netlist used by switch level sim-
ulators such as RNL. The traditional method of laying out an entire circuit and i:

extracting the transistor netlist can be improved upon considerably. By extracting
generated blocks individually and assembling the resulting netlists, one can alter
one part of a design and reconstruct the entire netlist with a minimum of effort.
Hierarchical extractors such as that used in MAGIC support this interface. By the
use of netlist merging utilities, flat extractors like MEXTRA can obtain a similar
savings of effort. One of our graduate students, Robert Cypher, has written a gen-
eral netlist merging utility for netlists derived from MEXTRA or the MIT utility
NETLIST.

2.3 Applications of Design Generators

The existing set of generators has been used in the design of several IC's of > 20K
transistors. The Quarter Horse, a 32 bit microprocessor, was described in the
previous DARPA technical report. The Quarter Horse employed generators for a
PLA, register file, and padframe. Ongoing modifications to the Quarter Horse will
likely employ generators for a multiplier and ROM (see section 4).

Another complex design to utilize generators is a variable order IIR digital filter
designed by Hyong Lee, a graduate student supported by the Consortium (see
Appendix III). The design implemented a filter of up to eighth order for the purpose
of speech processing. A PLA, multiplier, and padframe were all generated, the
remainder of the circuitry being custom designed. An effort is currently underway
to design an FIR filter entirely with the use of generators.

Designs such as the Quarter Horse and digital filter provide diverse applications to
test the usefulness of the design generators and their interfaces to the verification V
tools.

44
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2.4 Quality Assurance of Generated Parts

One of the main goals of the project is to develop a methodology for insuring that
generators produce quality designs over their entire range of parameters. For a
number of generators we have developed comprehensive test suites that verify the
design rule correctness as well as the functionality of instances. By automating this L
procedure, we have simplified the verification process required whenever a design
revision is performed. These test suites have already proven useful in an update of

* the multiplier generator.

Work is also proceeding to characterize the performance of generated parts. The
* recently purchased Northwest Instruments Test System has provided us with con-
* siderable timing data on the chips fabricated by MOSIS. To date we have tested

instances of a multiplier, ROM, counter, PLA and shifter. Information provided by
the tests has allowed us to verify the models employed by CRYSTAL and RNL.

3 Progress on the NetworkOCSimulation System

Network C is a multipurpose simulation system currently being developed by Bill
Beckett of the Consortium staff. Network C, or NC, is described in detail in Ap-

pendix IL. When complete, NC will simulate circuits composed of high level func-
tional models as well as MOS transistor models. Development work was initiated
on the TJW Academic Computer Center's CDC CYBER, and is continuing on the

* Consortium VAX.

At this point, the high level functional capabilities of NC are working on the VAX.
These capabilities include the hierarchical specification of networks of functional
models and specification of the procedural bodies of these models. The system at
this level of development can be thought of as a discrete event simulator imbedded
in C. Both integer and floating types for network node values are implemented. A
production version of the system has been installed for use by the Consortium staff.
A FIR filter description with loadable coefficients has been successfully modeled
using Network C.

In addition to the NC translator and run time system now installed, a new event
file plot program has been written to be used with NC. This program, called SCP,

* is considerably faster than a previous plotting program since it does not require the
event list to be sorted by signal name.



The developmental version of the system on the CYBER includes both the piece-11
wise linear MOS circuit simulation technique described in Appendix II and a general
non-linear system solver for strictly Kirchoff simulations. The MOS circuit simu-
lation modules have been translated to C and ported to the VAX. Currently, they
have not been integrated into the system. The non-linear equation solver has notI been translated to C yet.

* The work currently in progress on the VAX version is the restructuring of the
* - translation scheme around a more dynamic definition of the parse tree node. The

new node definition allows a simplification of the rule transformers since the type of

I each node is no longer a compile-time specification. It was found that the translation
* technique using the former scheme was becoming unwieldy as the number of rule

transformers began to grow.

* The current short term plan is to complete the restructuring of the rule transform-

S ers and integrate the MOS simulation modules. Implementation of these modules
requires that the syntax be extended to include the type moo, the notation for
derivatives, and the notation for subfields of the node records associated with net-
work variables.

* When the MOS simulation is working, a new production version will be installed
* and at the same time a reference manual will be ready.

4 Update on the Quarter Horse Microprocessor

*4.1 Modifications to the Design

* The Quarter Horse is a 32 bit microprocessor designed by a graduate level VLSI
j class at the University of Washington during winter quarter 1985 (A description is

appended to the last technical report). Since that time a number of modifications
have been made and the result termed QH2. The datapath has been rotated to
fit the short dimension of a 7200 by 9200 micron die. This allows approximately
one-third of the die to be used for various extensions and modifications to the base

* QH2 architecture. Extensions currently in progress are a multiplier, a ROM for
storing microcode and variable register windows.

In addition, the QH2 has a completely redesigned program counter, shifter and
ALU. A new PLA controller is based on a generator developed by the Consortium
staff. The global floorplan and routing was produced by Coordinate Free LAP r
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(described in Appendix I), permitting greater flexibility in the size and design of
the parts of the processor. The QH2 also features a LSSD register on the outputs
of the PLA, allowing greater ability to test the chip after fabrication.

S. The database of the QH2 was converted from the Caesar structure to the MAGIC
format, allowing use of the MAGIC graphical editor and its interactive design rule
checker. After conversion from MAGIC format to the CIF standard, we used CDRC
(based on the design rule checker written at CMU) for batch design rule checking
at the global level. MEXTRA was employed for circuit extraction preparatory to

" simulation. Switch-level simulation of the chip was done with RNL, the test vectors Z
being generated by a C program written for that purpose. .

4.2 Design of the Quarter Horse Test PCB

The Quarter Horse Test Board is a four-layer Multibus printed circuit board de-
" signed with the purpose of testing the Quarter Horse microprocessor. The board is
" 6.75 by 12.00 inches in size and contains a socket for the Quarter Horse, 64K words
- of system memory (a word is 32 bits), a 15MHz two-phase programmable system
"" clock and interrupt logic. Test pins are also provided to allow for easy observation

of the Quarter Horse signals by a logic state analyzer. Design of the PCB was an
:* independent study project of undergraduate Diane Honda.

There are two modes of operation of the Quarter Horse Test Board: the Multibus
*: mode and the Quarter Horse mode. In the Multibus mode the board acts as a

slave to the host computer system. In the Quarter Horse mode, external requests
cause the Quarter Horse microprocessor to execute programs resident in the system

"- memory. The intention is to load a program into system memory and then have
the Quarter Hone run it. Upon completion the program memory may be examined
via the Multibus interface.

In designing the board the major considerations were to have a fast system clock
(the initial specification called for a 20MHz system clock) and to choose a memory
fast enough so as not to limit the Quarter Horse reads/writes. Speed of reads/writes
between the host computer and the system memory was not a consideration. An
attempt was also made to have some flexibility on the board such as a programmable

- clock. Other design issues taken into account were board space, availability and
expense of parts and ease of routing.

' When the board design was completed a printed circuit board editor called PCB was

7
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used to do the board layout. Written by Andreas Nowatzyk of CMU, PCB supports
four-layer rectangular boards and generates a CIF output file that complies with the
design rules specified by MOSIS for four-layer boards. Unfortunately a Multibus
board is not rectangular so additional CIF was written which would make the board
the desired shape. The CIF output file was then edited using a text-editor. This -
edited CIF file was then sent to MOSIS for printed circuit board fabrication. L.

5 Distribution of the Consortium Toolset

In June, 1985 the Consortium began distributing Release 3.0 of the VLSI design
toolset. Currently 90 sites have received this release, which supports MOSIS nMOS
as well as CMOS processes. Feedback forms returned by 18 of these sites indicate

*g that at least 120 designs have been constructed with Release 3.0. A distribution
planned for summer, 1986 will contain a number of the generators developed under
DARPA funding.

An effort is underway to port the toolset from our 4.2 BSD VAX to an Apollo
DN550 node running Domain IX. The effort is proceeding smoothly with about
two thirds of the effort completed. Many of the tools have also been ported to a
RIDGE-32.

.4

6 Tntensive Class in CMOS Design

During April and May the Consortium will offer its fourth intensive class in CMOS
design. The course provides the background and lab experience for designing digital -
CMOS circuits. Participants have the option of implementing a 3 micron CMOS -.

design of their own choice during the course. The design will be fabricated through
the MOSIS commercial facility and the Consortium test facility will be available to

*i the participants for testing the returned parts.

8
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Coordinate Free LAP

Abstract

Coordinate Free LAP (CFL) is a library of subroutines written in C intended to
facilitate the construction of VLSI circuit layouts. The operators of CFL generate new cells
by forming combinations of existing cells using only relative positioning, that is without
reference to a system of coordinates. The external data representation used by CFL may
be made compatible with either of the UCB graphics editors, Caesar and Magic, so these
editors may be used in conjunction with CFL. CFL is able to assemble sets of large cells
very quickly because its positioning and routing operations work from descriptions of the
boundaries of cells and. therefore, avoid direct references to the geometry within cells.

This paper bears on topics 3 (IC Layout) and 4 (Silicon Compilation).
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Coordinate Free LAP0.

Introduction

Coordinate Free LAP (CFL) is a library of subroutines written in C intended to
facilitate the construction of VLSI circuit layouts. The system is organized algebraically
in that there is a data type called SYMBOL, a set of operands of this type, and a set of
operators which generate new SYMBOLs by forming combinations of existing SYMBOLs.

The system has only two geometric primitives, box and label, which may combined
to make objects. There is a larger set of non-primitive objects called macros, which mayC

be ued o gnerae fequntlyuse stuctues uchas cntats.Routing facilities are
* provided which generate a variety of planar and non-planar wiring patterns used to connect
* functional blocks. Additionally, there is a coordinate dependent facility called wire for

generating arbitrary configurations of material.

Although CFL has sufficient functionality to allow definitions to be developed for all
artwork including the lower level cells in a design, it is intended to be used more in the
mode of chip assembly. Hence the typical application involves using a graphics editor to
generate lower level cells or tiles and then using CFL facilities to assemble these leaf cells
into higher level modules. Currently, the system may be used in conjunction with either

* of the UCB graphics editors, Caesarl3l and Magic[4].L

To insure that a wide variety of assembly situations can be accommodated, CFL
* includes approximately 70 variants of operators for juxtaposing, transforming, and repli-

cating hierarchies of symbols. The positioning performed by most of these operators is
with respect to several abstract locations associated with objects, for example, 'the top',
rather than to a set of coordinates.

The syntax of these operators is quite compact since generated symbols are simply
* stored in program variables of type SYMBOL *. The embedding of the language in C is

such that sequences of CFL operators admit to both procedural and declarative interpre-
tations. The resulting coordinate free form for defining the structure of complex objects is LZ
grammatical in character and fairly easy to manipulate.

All of the calculations which support the operators of CFL are performed from descrip-
tions of the borders of the symbols. The information in the border descriptions includes

* the bounding box and lists of rectangles representing the intersection that each kind of
mnaterial in the symbol makes with the bounding box. If there is a label near this intersec-1.
tion. the border description will also contain the label. If a border description is available
for a particular symbol, CFL will not require access to any of the rest of the geometry of

* symbol.

The system will automatically generate border descriptions from the geometry when-
ever the need arises but it will also automatically save them on disk when library symbols
are written out. In this way, modules which have a large number of rectangles may be



accessed from the library without the need of reading all of the geometry files associated '
with their sub-modules. This capability allows CFL to assemble large blocks of circuitry
extremely quickly.

CFL provides automatic hierarchy compression when symbols are written to disk so L
that only those symbols which represent meaningful functional groups need be saved.

Entities

The operations provided by CFL are defined with respect to a number of basic en-
tities. These entities include primitive geometric objects and compound objects, called
SY.MBOLS; the boundaries of these symbols, called BORDERS; and individual symbolic
points along these boundaries.

CFL has the following two primitive objects -

box (layer, dx, dy) - box
label(name, dx, dy,pos) - rectangular label

These are the same two primitives used by Caesar and Magic. (In the case of Magic,
the label primitive also specifies a layer.) All coordinates are dimensionless. box creates a
box on the specified layer with dimensions dx and dy. label creates a label. Labels consist
of a rectangle with dimensions dx and dy and a name. pos is used to specify the position
of the name of the label relative to its center when it is displayed by the graphics editor.

A CFL symbol is either a primitive object or an object formed by combining primitive

objects and other symbols using the CFL operators. Each symbol is a collection of geometry
(boxes), calls to other symbols (calls) and labels. CFL represents symbols internally as
data structures having lists of boxes, calls, and labels and all references to symbols within
a CFL application program are made through pointers to these structures. The pointers
are declared with the declarator SYMBOL *

For example,

SYMBOL *boxl .*box2.*crossl .*pairl;
box1 = box("metal", 3.10); /* vertical bar */
box2 = box("metal",10. 3); /* horizontal bar */
crossl = cc(boxl.box2); /* metal cross

pairl = cx(crossl.crossl); /* two adjacent crosses */

In this example. cc is the center to center alignment operator of CFL. It creates a new
object by juxtaposing the center of the vertical bar and the center of the horizontal bar.
The operator cx constructs a horizontal pair of crosses, aligned by their horizontal center
lines, with the right edge of the first cross abutting the left edge of the second cross. (All

2
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CFL operators are declared SYMBOL * by the include file cfl.h which must be included
in CFL application programs.)

For each symbol, CFL maintains a list of coordinates which mark the centers of
all intersections of mask layers and the bounding box. These sets of coordinates, called
crossings, are maintained separately for each mask layer and for each of the four sides of
the bounding box. Each crossing may be referred to by specifying its symbol, side of the
bounding box, layer and ordinal along the side.

For example, the symbol, pairl, generated above looks some thing like this -

1 2

- -- --- " - - - -- - - --- -- ------

I I I I" '

1 2

The crossings are given by the following four-tuples -

(pair1, "top". "metal". 1)
(pair1. "top". "metal". 2) .

(pair1. "bot", "metal". 1)
(pairl. "bot", "metal". 2)
(pairl. "left", "metal". 1)
(pairl. "right". "metal". 1)

The string literals "top". "bot", "left", and "right" are used by CFL to indicate the
sides of bounding boxes. Layer names like "metal" are, of course, technology dependent.
For each technology, CFL uses the long format Caesar or Magic layer names. All crossing
ordinals start at 1 and increase along the coordinate corresponding to the bounding box
edge in question.

Several of the routing operators in CFL have symbolic points as arguments. These
arguments are declared to be of type PT * and are generated by the symbolic point
descriptor constructor, pt. For example, to construct symbolic points which refer to the
leftmost and rightmost metal crossings in pair1 above, the following program statements
are used -

a..%

PT *pl. *p2 ;

pl = pt(pairl. "left". "metal". 1);
p2 = pt(pairl. "right". "metal". 1);

3
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Whereas symbolic points are used to refer to specific crossings, CFL borders are used
to refer to sets of crossings. CFL borders are used as arguments to some of the routers. A
border is similar to a symbolic point in that it is referenced through a descriptor, declared
BORDER *, and constructed using a constructor, in this case, bd. In the simplest case,
a border contains all the crossings associated with a given symbol, side and layer. Hence,

BORDER *bl.*b2;
bl = bd(pairl. "top". "metal");

,.,]b2 -- bd(pairl, "bot", "metal")";:

constructs two borders; bl, containing all the metal crossings on the top of pairl, and b2,
containing all the metal crossings on the bottom of pairl.

In addition to the basic border constructor which, by default, includes all crossings in -
its resulting border description, CFL provides operators bdin and bdex for including and
excluding specific crossing ordinals from border descriptions. In general then, the border
description facilities are capable of directing the routers to consider any subset of crossings
along the side of a particular symbol. For example, the following stftements construct a
description of the top of pairl which includes only the second crossing:

bi = bd(pairl. "top". "metal");
bl = bdex(bl.1);

In the special instance that the ordinal argument is zero, bdin will include all crossings
in its resulting border and bdex will exclude all crossings from its resulting border.

Operators

CFL has six classes of operators -

I. Alignment operators
2. Linear transformations
3. Array constructors
4. Tiling operators
5. Library access operators
6. Miscellaneous operators

The alignment operators combine a pair of symbols by placing them in one of several
relationships with respect to each other. The coordinate free nature of CFL stems largely
from the fact that the alignment operators typically specify the position of one symbol
relative to another rather than the position of either of them relative to a more global set

4
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of coordinates. CFL has six categories of alignment implemented as the following thirteen
alignment operators -

1. Center to center cc
2. Center line to center line cx,cy
3. Edge to edge 11,rr, tt,bb
4. Border to border bx,by
5. Point to point or center pax,pay, cp
6. Origin to origin 00

Each of these operators has two arguments si and s2 which are symbol pointers,
declared SYMBOL *. The operators form a new symbol containing si and s2 positioned . -.

according to the indicated alignment criterion. The position of s2 relative to s1 in this new
symbol is called the (0.0) position. All of the alignment operators have three additional -
variations which allow the specification of offsets from this (0,0) position in the z. y, or
both directions. The variations are formed by suffixing the operator name with dx, dy,
or dxy. For example, the cx operator has the following four forms:

cx(sl,s2) - pair in x, center lines aligned
cxdx(sl,s2,dx) - pair in x, center lines aligned, x offset
cxdy(sl,s2.,dy) - pair in x, center lines aligned, y offset
cxdxy(sI.s2,dz.dy) - pair in x, center lines aligned, xy offset

The center to center, center line to center line, and edge to edge alignment operators
depend only on the bounding boxes of the symbols being aligned. The border and point

*." alignment operators .however, depend on the border crossings. For example, the bx oper-

ator forms the horizontal pair of symbols (sl,s2) such that the right side of the bounding
box of si is adjacent to the left side of the bounding box of s2 and the symbols are aligned
so that corresponding patterns of material along the common edge match up.

The point alignment operators are similar to the border alignment operators except
that the symbols are aligned so that specfic symbolic points along tlie respective borders
are adjacent.

The origin to origin operator is used in conjunction with CFL's routers and will be
discussed later.

There are thret linear transformations -

m x(s) - mirror in x J.

my (s) - mirror in y
rot(s.n) -rotate -

The argument to rot is in degrees and must be an integer multiple of 90.

5

..,". .. . ..-.... . . ... . -..-..-...... .... . .-. . . . .. . ... .,. .... , .. . .- .
• -,- '- -,- -¢ € t_' .' 'e'._-_._ - - . . . " -. - .- .. . _ _ . . .. . . . ..,.. ..-.,- _" .". _,.. . .x N .'. _._ ..

"



There are three array constructors, nx, ny, and nxy, which can be used to generate

horizontal, vertical, or rectangular arrays of a given symbol. As in the case of the alignment

operators, offset variants of these operators are also defined. The interpretation of the

offsets is, however, slightly different. dx and dy, when supplied, are taken to be the

spacings between the bounding boxes of successive array elements. The (0,0) position is

when the bounding boxes are adjacent. The variants of the array operators which would

produce a non-rectangular structure are not defined, for example, nxdy.

nx(s,n) - repeat in x
nxy(snz,ny) - repeat in x and y
ny(s,n) - repeat in y

There are three additional array constructors repx, repy and repxy which construct

arrays of particular spatial periods. The arguments to these routines are given as dx and ,

dy but they specify the periods rather than offsets. These operators do not have variants

for providing additional offsets.

repx(sndx) - repeat in x with period dx
repxy(s,nxny,dzdy) - repeat in x and y, with periods dx dy
repy(s,n.dy) - repeat in y with period dy

Tiling is similar to an array operation except that each element of the generated array

can be a different symbol. There are three tiling operators, vx, vy, and vxy, which can

be used to generate horizontal, vertical, or rectangular tilings. These operators are similar ..,,
to the array operators except that the first argument is an array of symbol pointers rather ..- .

than a single symbol pointer. The tiling operators, then, operate on vectors of symbols so

their :nnernonic starts with v. There are no offset variants for the tiling operators since

the onfset for each tile could potentially be different.

vx(s,n) - vector in x
vxy(s.nx,ny) - vector in x and y
vy(s.n) - vector in y

There are two operators for accessing library symbols -

gs(cell) - get library symbol
ps(y.s) - put symbol in the symbol table

gs will read a library symbol in either Caesar or Magic format, place the symbol in

the data base and return a pointer to it. If the symbol is already in the data base, gs

simply returns the pointer, that is, it will read the symbol only once.

ps compresses the hierarchy below its argument and marks that argument as a library

.-vmbol. The hierarchy compressor removes from the hierarchy all cells which are not
• • %.



marked as library cells, that is, cells which were not read in with gs or cells which have
not been marked as permanent by a call to ps. Therefore, ps can be used to not only to
save symbols but also to control the actual structure of the hierarchy.

CFL is designed to be able to be used with any desired technology. It obtains its
table of layer names from technology files in the CFL path. A call to the routine cflstart
initializes the package and specifies the name of the technology file to be used. cflstart
must be called before invoking any other CFL functions. cflstop causes all permanent
symbols to be written to disk and should be called just prior to exiting a CFL application.

Routers

CFL does not currently provide high level routing facilities such as a general channel
router or switchbox router. Rather, the CFL routers consist of a set of wiring pattern
generators each of which is specialized to a particular kind of routing situation. These
routers, which are designed to be used in conjunction with each other and the other CFL
operators, support a set of elementary routing operations from which more sophisticated

patterns may be constructed.

There are two types of routing facilities available in CFL, planar routers and non-
planar routers. The planar routers are -

pp(sO,pl,p2,w) point to point router
pr(sO,bl,b2,w) - general planar router
ext(b.,d,w) - border extender
fill(s,side,d) - Caesar fill operation

and the non-planar routers are -

plx(sO.pl,p2.w,ct) - horizontal point to line router
ply(sO.pI,p2,w, ct) - vertical point to line router
elb (sO, hi. b2, w, ct, rev) - general elbow
tee(sO, bi,b2,w, ct,rev) - tee

Since CFL is coordinate free, the routers operate from border descriptions and from

symbolic point designations. The generation of symbolic point and border descriptors is

described in the earlier section, Entities.

Most CFL operators produce a new symbol by combining existing symbols. The ar-
guments to these operators have no particular spatial relationship to each other before

the operation takes place. The routers, on the other hand, rather than combining sym-
bols. must form connections between them. This process requires that the symbols to be
connected have a previously established fixed spatial relationship.
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Symbols acquire a fixed spatial relationship as soon as they become constituents of

some higher level symbol. CFL refers to a higher level symbol, sO, which contains symbols

sl and s2 as a container of si and s2. Within any container, the relative positions of sl

and s2 are fixed.

The routers, like all other CFL operators, are SYMBOL * valued functions. When a

router is invoked it produces a pattern of wiring as its result. This pattern of wiring is not

written' into place directly by the routing operation, rather it is a separate symbol in its

own right. Therefore to connect two symbols using the routers, two steps are necessary:

1. Use one of the routers to generate the pattern of wiring necessary to form the required

connections.

2. Use the origin to origin alignment operator to locate the generated wiring pattern in

the container so that the intended connections are made.

In all cases, the wiring is generated in the coordinate system of the container and

often the two steps above may be combined using a statement of the following form -

result = oo(container, router(container,...));

The rationale for requiring that the generation and placement of wiring patterns be

performed in steps rather than as an atomic operation is that in many cases routing

problems require the generation of complex patterns in which wiring generated by one call

to a router must itself be connected to the wiring generated by another call to a router.
Separating the generation allows the generated wiring to become a separate symbol which

may be then operated on using any CFL operator.

The point to point router generates a single wire for connecting two symbolic points

(see Entities). The layers of the points should match and both points must be uniquely

locatable within the containing symbol.

The planar router generates a planar wiring pattern for connecting the points in two

borders (see Entities). The borders must contain the same number of points. Also they

must be uniquely locatable within the containing symbol. All wires will have the same

width.

To simplify the diagnostic process, pr will construct wiring patterns whether or not
there is sufficient space for the number of wires requested. It will, however, issue a warning

message if any of the generated wires are closer than a specified tolerance.

2xt generates a pattern of wiring for extending all points in a given border perpen-
dicularly for a specified distance. fill is similar to ext except that all layers crossing the

indicated side are extended. The extensions have the same widths as the crossings. For

example. suppose it is desired to generate a symbol s2 which consists of five instances of
a symbol si placed a distance 10 apart and connected by extending the material of the

right side of sl. The following CFL statement generates this configuration -

s2 = cx(nx(oo(sl.fill(sl,"right",10)),4).sl);

8
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Generally speaking the planar routing facilities of CFL are technology independent
'1 whereas the non-planar routing facilities are technnology dependent since contacts must

be specified.

P plx generates a single wire for connecting a symbolic point the vertical line running
through another symbolic point. The connection is made horizontally. The layer of the
first point taken to be the layer of the wire. The points must be uniquely locatable in the
container symbol. If requested, a contact is placed with its origin at the intersection of the
vertical line and the generated wire.

ply is similar to pix but generates a single wire for connecting a symbolic point to the
horizontal line running through another symbolic point. The connection is made vertically.

elb generates a wiring pattern for connecting the points in two borders, say, bi and
b2. W~ires from bi and b2 may have different widths. The pattern generated must form an
elbow but it is not necessary that bi and b2~ be on the same layer. If requested, a contact
will be placed with its origin at the intersections of the wires from bi and the wires from
b2.

elb may generate either forward or reversed elbows. For a forward elbow the low
order points in bi will connect to low order points in b2. For a reversed elbow, low order

* points in bi will connect to high order points in b2.

Through combinations of selecting subsets of the borders with bdin and bdex and
* utilizing the normal and reverse options, a succession of elb invocations may be used to

form a set of elbows between bi and b2 which implement any desired ordering of the
connections.

tee generates a wiring pattern for connecting the border of a tee connected symbol
to the wiring of a transverse routing symbol. The wiring in the routing symbol is assumed

kv to run perpendicular to the wiring generated for connecting the tee connected symbol.
The routing symbol. presumably generated by a prior call to a router, is also assumed to
consist strictly of parallel lines, no elbows. All generated wires will have the same width. -

If requested, a contact will be placed with its origin at the intersection of the generated
wires and the wires existing in the routing symbol. The connection order for tee may be.
either forward or reversed.

All of the non-planar routers have a contact argument ct. The provision for positioning
*this contact in generated routing is coordinate dependent in that the contacts are always

positioned so that their origins, coordinate (0.0), coincides with the intersections of wires on
different layers. If the contacts are symmetric and generated with the CFL box primitive,
as is the case with the NNMOS macros gb and rb, the origins will be in the geometric
centers because the box primitive is designed to make boxes which are symmetric about

the origin whenever possible. If other, asymmetric, forms of contacts are needed they may
be generated according to the above criterion using the CFL wire facility described later.

Use of the routers generally requires that three pointers into a symbol hierarchy be
u.ipplied - the container and the two symbols to be connected. When symbols are retrieved



from the library using gs only one pointer is provided. A typical problem of this form is
to retrieve from the library both a complete circuit and a pad frame and then to connect

g.: the circuit to the pads. The CFL procedure locate may be used to obtain a pointer to
any named sub-symbol within a symbol hierarchy. All symbols saved with ps are named
symbols.

For example, suppose a circuit called memory is to be placed in a pad frame and
, connected. Suppose further that the section of the pad frame containing the output pads

is named outputs and that the memory outputs are available on the boundary of a sub-
-* symbol called planes. The following CFL code accomplishes the task:

SYMBOL *memory,*pads.
*outputs. *planes. *chip;

/* get the memory and the pad frame from the library

memory = gs("memory");
pads = gs("pads");

/* establish pointers to the planes sub-symbol of the memory */
/* and the outputs sub-symbol of the pad frame

outputs = locate(pads."outputs");
planes = locate(memory."planes");

/* position the memory within the padframe

chip = ccdx(memory.pads.120);

/* connect the outputs from the memory planes to the
/* corresponding output pads

chip = oo(chip.pr(chip.bd(planes. "top"."metal").
bd(outputs."bot" ,"metal").3));

Macros

CFL has two groups of macros - technology independent macros and technology de-
pewr(h'n? macros. The technology independent macros are -

10
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alpha(s,layer, w) - character string, width w
cross(layerl,dzl,dy,laer2,dx2,dy2) - two boxes, centers aligned
letter(c,layer, w) - alphanumeric letter, width w
lne(layer, w, dx, dy) - el, north east
lnw(layer, w, dx, dy) - el, north west
lse(layer,w, dx, dy) - el, south east ...

lsw(layer, w, dx, dy) - el, south west

alpha generates a string of characters which are 5w wide, 8w high with 2w spacing -
in between. The same rules apply to letter. The character set that is available is

A--.A Z"'

0-9

Currently. space (or blank) is not available.

The technology dependent macros available generate commonly used structures like
contacts, pullups and and components of standard pad frames.

Wire Facility

In order to provide for the parametric generation of particularly complex leaf cells,
or cells with specific coordinate requirements like router contacts, CFL includes the wire
facility which allows the use of symbol relative coordinates. Note that the use of this
facility can introduce significant coordinate dependency into a design so it should not in
general be used in cases where the coordinate independent operators are able to serve.
The procedures associated with the wire facility are the following -

wire(layer,width) - Initialize a wire
at(zO,yO) - Move to the point (xO,yO)
dx(dxO) - Draw to the point (x+dxo,y)
dy(dyO) - Draw to the point (x,y+dyO)
iso(s) - Include symbol origin
wl(layer) - Reset the wire laver
ww(width) - Reset the wire width
x(zO) - Draw to the point (xO,y)
y(yO) - Draw to the point (x,yO)

wire is of type SYMBOL * All of the procedures apply to the wire generated by
the last call to wire. Note that the symbol generated by wire may contain an arbitrary
number of physical 'wires' which need not be connected. The only thing they have in
common is their coordinate system.

11"
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I
The procedure iso has a symbol as its argument. iso includes that symbol positioned

so that its origin coincides with the current wire position. Note that the current wire
position, or more precisely, the position within the coordinate system of the current wire,
is initialized with the at procedure and maintained by all move and draw procedures.

Experience Using CFL

The UW/NW VLSI Consortium has been using CFL for the last year to make a
set of module generators. These generators are designed to produce instances of general
structures which meet various specifications. For example, a CMOS multiplier generator
has been developed which produces two's complement multipliers for either signed or
unsigned operands of varying sizes. Flexible generators have also been developed for a
PLA, a CAM, several kinds of ROM's and a multiplexer. In general, the generators
include features like automatic adjustment of driver and buss sizes as a function of the
modules' speed and power requirements.

In addition to the module generators, CFL has been used for assembling and routing
the components of the Quarter Horse microprocessor that the Consortium has developed.

So far indications are that CFL is easily learned by those familiar with C. The number
and sohpistication of the projects that have been completed using CFL indicate that the
system is substantially more convenient than coordinate based systems while still retaining
a sufficient degree of flexibility.

Due to the border abstraction, the system has an excellent speed advantage over many
other procedural and graphical approaches for assembly of larger modules. For example,
the sample program shown earlier, which places a ROM in a pad frame, executes in less than
two seconds on the VAX 11/780. The ROM has approximately 5000 transistors. The ROM
generator produces an eight by eight instance in about 16 seconds. The main limitations
are that the SYMBOL data structure consumes about 2KB of memory per symbol and
that the routers are not always straightforward to apply due to their somewhat specialized
formulation.
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MOS Circuit Models in Network C

Abstract

Network C is a programming language designed for constructing simulation models
of VLSI circuits and systems. The language, which is a superset of C, supports a range of
modeling capabilities including approximate solution of Kirchoff equations at the circuit
level and discrete event functional simulation at the system level. When used to model
a NIOS circuit, the system first decomposes the circuit into a set of independent stages.
The values of nodes, represented by piece-wise linear functions, are communicated between
stages using discrete event scheduling. The determination of these piece-wise linear func-
tions is based on continuous time calculations. The result of this hybrid approach is a fast
simulation capability which maintains enough accuracy to capture both the digital and
analog aspects of a circuit's behavior.

This paper bears on topic 1 (Simulation).
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MOS Circuit Models in Network C

Introduction

Network C is a programming language designed for constructing simulation models
of VLSI circuits and systems. The language, which is a superset of C, supports a range of

modeling capabilities including approximate solution of Kirchoff equations at the circuit
level and discrete event functional simulation at the system level. The circuit description
capabilities of the language are hierarchical and allow subsystem models of varying levels
of precision to be mixed.

In the case of MOS models, the execution of a Network C program has two phases.
The first phase is circuit analysis. The effect of circuit analysis is the decomposition of
the system being modeled into a set of stages. Each stage is isolated in that the only
connections existing between it and all other stages are through nodes connected to gates.
After the stages have been isolated in this fashion, the approximate behavior of the system
can be obtained by evaluating each stage independently.

The calculation phase of Network C utilizes a combination of continuous time cal-
culation and discrete event scheduling. This technique is aimed at retaining some of the
accuracy of purely continuous time systems while realizing the speed advantage inherent
in discrete event systems. The value of increased accuracy over purely discrete systems is
that a larger class of circuits can be modeled. For example, circuits which utilize analog
circuit techniques or in which there is a considerable amount of charge sharing are usually
beyond the capabilities of purely switch level simulators. The value of the increased speed
of discrete event systems over purely continuous time systems is that circuits with a larger
number of components can be accommdated.

Discrete event simulation requires that each stage accept state valued functions as
input and produce state valued functions as output. To meet this criterion, Network C
models node voltages with piece-wise linear functions. Since piece-wise linear functions can
represent an unbounded number of states, Network C reduces the state space by truncating
both the derivatives and values of the functions to fixed precission. This produces a set
of states which, although it is small relative to a continuous representation, it is still large

* enough for substantially improved precission when compared to systems with only a few
to tens of states.

The continuous time part of the calculation used by Network C differs from the calcu-
lation done in SPICE 4: in three fundamental respects. First, since Network C partitions ,
the circuit into stages and computes each stage independently, the rank of the set of node

equations is dramatically reduced for larger systems. Second, Network C uses direct three
tep quadrature rather than a nonlinear equation solver to solve the equations for each

s~ge. Finally. Network C uses only simple DC MOS law models for transistors. All of
the-e aspects tend to trade accuracy for sped.

:.-
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While Network C may be used to model systems at high levels of abstraction, the
purpose$t of this paper is to provide an overview of the Network C facilities used in developing
circuit level models with emphasis on describing the calculation used to evaluate MOS
circuiits. The first section describes MOS circuit analysis and lists the assumptions about
the nature of MOS circuits on which the method is based. The next section discussesY
behavior calculation in detail. Finally, two short example.- are presented. Although a j

complete definition of the the syntax and semantics of the various Network C constructs is
beyond the scope of this paper, many of these constructs are illustrated in the examples.

Circuit Analysis

The MOS abstraction implemented by Network C embodies the following three hy-
potheses.

1. MOS circuits are composed primarily of gates connected by passive steering networks.
The function of the gates is to connect various circuit capacitors to the power and

* ground rails for charging and discharging. The interpretation of the behavior of the
circuit is in terms of the voltages on these capacitors at any point in time. That is,
systems are designed so that information is not directly represented by current flows.

2. The power and ground rails have zero impedance and can supply arbitrary currents.

3.The average current into the gate terminals of MOS transistors is zero. Hence, there
is rio possibility of DC coupling between stages of the circuit.

Assumption 2 is implemented by simply holding the voltages of all device terminals
connected to the supply rails constant at the corresponding level.

The Network C uses assumption 3 as the basis for its decomposition of circuits into
stages. Each stage consists of a subset of the nodes of the original circuit which may be
reached from each other without crossing any gates, that is, by following only source-drain
paths. These nodes are called the output nodes of a stage. All devices with either their
source or drain connected to an output node in a stage are also considered part of that
stage.

Circuit analysis partitions the circuit so that the value of each node in the circuit is
determined by exactly one of the stages. That is, all drivers of a node, if there are more

* than one, belong to the same stage.

When circuit analysis has completed, each stage will contain zero or more devices
6-r whose gates are not connected to nodes determined by that stage. The voltages on these

glates are considered to be the independent variables or input nodes from whose values the
behavior of the output nodes of stage is computed.

Behavior Calculation

Discrete event scheduling is used to control the operation of the behavior calculation.

2
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The models for each stage, having been derived by circuit analysis, are invoked whenever
* ;II inp~ut to the stage changes state. The effect of evaluating the model is the calculation

of new dlescriptions for the voltages of each of the output nodes in the stage.

The inputs of a stage are the nodes that are connected to the stage's independent I
g~eate$. -Note that by 'change in state' is meant a change in the parameters of the linear
raodel for a node's voltage, not simply a change in the voltage. To clarify the nature of a
change in state, consider the following waveform and its derivative:

---------

---------

Ths ae s ypcl isn eg. t' taechngstwc. urn tefistcane

Thins wer ois yia iigeg.' state changestieeuigth.is hne

The evat (wiofch t novs the slopenaio of thiee-ie linear model) gosfoferooapsiievle

eah ofents intpthisesuao gis analogos toea usel fo eges of te licu leves evetsouin

more direct methods are possible for simple stages, currently Network C generates piece-
wise linear miodels by performing continuous time calculations and then fitting the resulting

* curve with a piece-wise linear form.

The continuous calculations are performed forward in time from the current time
point. Since the behaviour of the inputs for future time has not yet been calculated, the
calculation of the output forecast is based on the predicted behaviour of the inputs.

This prediction of input behaviour is computed as follows. The state of each node in
the circuit consists of the three parameters of its linear model, namely:

M slope
b intercept
to time of last change

The availability of these parameters means that the value of the node-at any future
point in time can. in principle, be predicted using the linear formula

y ~rn (I 10) -- b



Actually, the above formula works for large values of t - t o only if the signal is con-
.tant. that is m = 0. Otherwise, the formula generates an unbounded value. Therefore,~~immediately following applications of this formula, Network C bounds the result above'"I

and below by the power supply rails. The effect of this heuristic, which works better for
CMOS circuits than NMOS circuits, is that the linear models for all nodes in the system
are given a piece-wise linear interpretation.

The calculation of outputs from inputs proceeds as follows. For each time point in
tie forecast range. the system calculates branch currents for each DC branch in the stage.

Note that there are no DC branch currents between stages since there are no DC paths
between stages. These currents are DC branch currents because, during this part of the
computation, all node capacitances are considered to be zero.

The branch currents through each transistor are calculated using the following con-
tinuous form the the DC MOS law:

ili, = 2k(v9, - t'gh)Vd. - kvd, Vg, - Vth Vd'

i84t k(vge - VVg) - V ih < V,

iof 0 Vg Vth < 0

noindent The above equations are for NMOS; for PMOS the equations are similar.

Inputs to the calculation are the voltages on the source and drain nodes at time t - 1,
the forecast time. and the linear model of the gate node. Using the forecast time and the
linear model, the gate voltage is determined by the prediction algorithm described above.
Outputs from this calculation are the source and drain terminal currents which are the
same except for the sign.

After all branch currents for the stage have been computed, the currents for each node
are summed. This is similar to the normal Kirchoff procedure except that, since the node
capacitances have been disconnected, the result of this summing is a non-zero residual
cnrrent at the each node.

Next. these residual currents are smoothed using the filter:

i = (io + 2ig-t + it-2)/4

where io is the unfiltered residual current, i_ -I is the filtered residual current at t - 1 and

I t-2 is the filtered residual current at i - 2.

The final filtered residual currents are then forced into the node capacitances produc-
ing the set of node voltages for this time point. This particular numerical technique is
-imilar to that used in QRS6'.

The above procedure continues until a complete set of output curves for the stage has
been computed. Typically this set of curves will span about 50 nano-seconds and contain
50 time points per output node.
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Each of these curves is then fit using a piece-wise linear curve fitter. The curve fitter
cla. ifivs curves by the number of inflections in their second differences and will try to
generate a fit having one, two or three line segments. Each segment is the best linear least
?q-1uarcs approximation for the points in the segment.

After the curve fitting, a continuity constraint is applied to the resulting piece-wise
linear form: in the case in which the new piece-wise linear model for a node intersects the
current piece-wise linear model at some future time, the first event in the new piece-wise
linear AOrm is delayed until that time.

Finally. the events of the new piece-wise linear model of the node are queued. There
. can be from one to three of these events and, since the queuing mechanism is preemptive,

some events in the new form may preempt events queued earlier.

Since the determination of piece-wise linear models involves a continuous time corn-
putation, and since this computation is really a forecast which may have to be recalculated
if the assumptions on which it is based change, Network C simulations could potentially -. ,':
require more computation than fixed time step continuous time approaches.

There are several factors that tend to overcome this tendency for increased compu-
tation. First, since the scheme is event driven, detailed calculations for any stage are
performed only in the neighborhoods of transitions on nodes which are inputs of the stage.
Second. when an event occurs on an input that was predicted during a previous invocation
of the model of a stage, the model exits immediately and the output is not recalculated.
Since the new event was anticipated, its effects have already been included in the output
forecast.

Finally, redundant calculations are avoided by using a calculation history. Associated
with each stage. these calculation histories consist of a small set of situations and actions. j

A situation is an encoding of the states of the inputs and outputs of the stage at a time
" i1miediatelv following a change in an input. The action is the set of outputs that were
computed in response to the situation. Since the most stages tend not to have very many
nodes. and since the parameters of the piece-wise linear models are granular, it is feasible
to keep a reasonable number of situations in the history. Also, since the shapes of the
transitions for most nodes in digital circuits are determined by time invariant physical
characteristics, it is likely that the situations recur. When this happens, the output for
the stage is available immediately as a result of table look up in the calculation history.

The net effect of all these mechanisms is that the resolution of the simulator is variable.
In the worst case of continuously changing input, say a sinusOid, the forecast and fit

,' procedures will generate a large number of short lived piece-wise linear models of localities
of the sine wave, Of course, using this mechanism to track a sine wave is expensive.

" Generally speaking, the more the natural behaviour of the nodes of the circuit fit the
a-isumptions of the forecasts the less the amount of calculation required. In the best case

' it i. possible for the simulator to completely learn the circuit and, once that happens. all
"1,'haviour is obtained by table lookup.

, . .
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Examples

In discussing the examples, a number of the features of Network C language and

translator will be highlighted. The Network C translator is implemented using a three
pa. is preprocessor. The first pass uses a yacc parser to build a complete parse tree. The
grammar used by the parser consists of the grammar for the portable version of the C
compiler with the extra Network C constructs added. The second pass applies a number
of parse tree rewriting rules to convert the subtrees containing Network C constructs

into subtrees containing only C constructs. The third pass walks the modified parse tree
outputing the text of the C translation of the original Network C input.

The C programs generated by the Network C translator can be compiled by the system
* 1C compiler and the resulting object files represent executable models of VLSI subsystems.

These models, like all C procedures, may be put on libraries for inclusion in other, more
complex models.

Network C programs have two module types - network descriptions (called circuits)
and procedural device or subsystem models (called models). Circuits, or network descrip-
tions. consist of a set of elements connected to a set of nodes. An element is either another
circuit or a model.

Models are procedures which rompute the vaiues of outputs from inputs.

The first example. shown in Figure 1. is a simple series of three CMOS inverters. The

cxamtple illustr;tes the general form of Network C programs.

maincircuit mos9()
/* Simplified cmos inverter chain

elements

gi (gen. O.O.5.0.1.Oe,-1.Oe9) clk. a. x:
it (cinv.5.0.00.1.0e-4.1.0e-4) a. b;

i2 (cinv.5.0,0.0.1.0e-4.1.0e-4) b. c;
i3 (cinv.O.O..1.Oe-4,1.Oe-4) c. d;

conditions

elk •(€lk-1) ,2; [50.e-9)

Figure 1.

The dc-larator chcmrnut intro(lucr,, the list of network elements. Each network element

C:)
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has an instance name, a class name, a set of optional parameters, and a terminal connection

The first element in this circuit, gi, is a clock generator which generates a clock signal
1. U is svnchronized to the signal clk and has a minimum value of 0.0, a maximum value

of 5.0. and rise and fall rates of 1 volt per nanosecond. The second phase of the clock, x,
i!. not used in this experiment.

The next three elements form the series of inverters. The clock, a, drives the first
inverter. Its output, b, drives the next inverter whose output, c, drives the last inverter.
The parameters following the class name, cinv, initialize instance variables within the
definition of cinv (see below).

The logical clock, clk, is generated by the statement following the conditions declara-
tor. The interpretation of this statement is that ck will oscillate between 0 and 1 with a

transition occurring every 50 nanoseconds.

The procedure cinv shown in Figure 2 computes the input/output relationships of the
inverter. The declaration

network float trigger a;

is a Network C construct that specifies that the first terminal of the inverter will be
connected to a node which has a floating point value. (Network C also allows integer

nodes.) The trigger specification indicates that the model is to be invoked every time this

quantity changes state. Recall that the state is defined to be the state of the piece-wise
linear model of the quantity so cinv will get control every time the node connected to its

first terminal changes either its slope or its intercept.

The declaration

network float rgs y;

indicates that the second terminal of the inverter is also connected to a floating point node.
This terminal is not a trigger which means that the inverter will not get control if the node

it is connected to changes. Also, the specification mos means that the node connected to
this terminal is to be considered part of a MOS circuit and MOS analysis will result. This
specification is required since Network C allows other types of network nodes (for example,
elk above) which are not considered by MOS analysis. In the case of this circuit, circuit
analysis will put each instance of cinv in a different stage.

The general rule is that the nodes appearing in the terminal list of an element in a . -

dements declaration are bound in order to the network variables declared in the model.

Similarly. the quantities in the parameter list of an element are taken in order to initialize
local variables in the model. For example, all the instances of cinv in Figure 1 have the
,-ame set of parameters. They are. vdd (set to 5.0), gnd (set to 0.0), kpu and kpd (both
,.r to 1.Oe-4).

7 • I.



#define clip(v.vl.vh) aminl(amaxi((vl).(v)),(vh))

cinv(tf .vout.iout)
float tf: /* forecast time *
float vout. /* output voltage

float *iout; /* output current. returned

/* CMOS inverter *

network float trigger a;

I nnet w o k float inos Y;

local float vdd. /* high power supply voltage

grid. I' low power supply voltage

kpu. 1' k for the pull up transistor *
kpd; /* k for the pull down transistor

float vtn.vtp. /* threshold voltages
V1. /*input voltage

a'ipd.ipu; /* transistor currents -

/* Threshold voltages are O.2*Vdd. *

vtn 0 .2*vdd; vtp =-O.2*vdd:

/* Generate the input forecast and clip.

vI= a'*(clock + tf - a->tO) *a;

V1 clip(vl.gnd.vdd);

- /* Compute transistor currents.

pmosO~vi. vdd. vout, kpu. vtp. &ipu):

nmosO~vi. gnd, vout, kpd. vtn. kipd);

/* Compute output current. *

*iout = ipd + ipu;

Figure 2.
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Since this circuit is closely coupled, circuit analysis will place all nodes and devices in the

"- sae stage. The circuit is a good example of a circuit whose behavior calculation requires

Sthe modeling of both analog and digital characteristics.

maincircuit ram()

/* RAM cell and sense amp */

nodecap

}," ~bit -a 1600.e-15: . -

bitn =1600.e-15;
nOl = 160.e-15;

n02 = 160.e-15;

elements

gl (gen. 0O.O5.0.1.0e.-l.0eg) eq. equal. equaln

g2 (gen. 0.0.5.0,1.0e9.-I.Oeg) clk. read. readn

g3 (gen, 0.0.5.0.1.0eg,-1.0eg) clk, word, wordn

tOl (nmosfet. 2.33e-5. 1.0) word. bit. nOl

t02 (nmosfet. 2.33e-5. 1.0) word. bitn, n02

t03 (nmosfet, 2.33e-5. 1.0) n02. nOl. gnd

t04 (nmosfet. 2.33e-5. 1.0) nOl. n02. gnd

t0 5 (nmosfet. 6.99e-5. 1.0) equal, bit. bitn

t06 (pmosfet. 6.99e-5, -1.0) bitn. n03. bit

t07 (nmosfet. 4.66e-5: 1.0) bitn, bit, n04

t08 (pmosfet. 6.99e-5. -1.0) bit. n03, bitn

t09 (nmosfet. 4.66e-5. 1.0) bit. bitn, n04

,. t10 (pmosfet. 6.99e-5. -1.0) readn. vdd. n03

til (nmosfet. 4.66e-5. 1.0) read, n04. gnd

Figure 4.

The circuit description given in Figure 4 is similar in form to that of the three inverters

of the first example. In this case, the components consist of three waveform generators

and the n and p transistors modeled by nmosfet and pmosfet respectively.

10
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The nwdccap declarator is used to associate specific capacitance values with nodes.
(There is a small default minimum node capacitance associated with all MOS nodes which
i- required by the numerical method.) In this case, the bit and bitn lines are given large
C:P;CitINs, 1600 femtofarads, and the memory cell storage nodes are given smaller, but
larger than typical, values.

":7no jet uses the same basic DC MOS law model described above to calculate drain- j
source current from terminal voltages. For the nrmosfet and pmosfet models, however, the

gain supplied as the first parameter is one half the device transconductance, that is

gain = k/2. ii
The device conductance, k, is defined as the process conductance times the width over

the length, that is, -

k = k'(w!I)

where k' is the process conductance given by

k' P lCoz. -:'

it is the carrier mobility and co, is the gate oxide capacitanice per unit area.

If (ox is the permittivity and to is the thickness of the gate dielectric, then

Cox /Oztoz.

For this example we have taken

u G00 cm2 /volt-sec

foz = 3 .9 0 = 3.5 x 1013 farads/cm
to_ = 0.1 x 10-6 meters (1000 angstroms).

Therefore,

Co, = 35.0 x 10- 9  farads/em2  r
k' = pcox = 2.0 x 10 - 5 amps/volt 2 (approx)

and the gain parameters for the transistor models are given by

.gain =k12 Or 'u/21 1.0 "1 l-5(wv/l). • J
.. N
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The vt parameters are 1.0 for n transistors and -1.0 for p transistors.

Referring to the circuit diagram for the RAM cell and sense amplifier shown in figure 3,
tile memciory cell itself consists of the four transistors, T1, T2, T3. and T4. The information -

'-tored on the gates of T3 and T4 is made available on bit and bi'tn when the word line is

L-.lbrought up.

Prior to bringing up the word line, bit and bitn are brought to the same potential, or
equalized, by raising the equal line which turns on T5.

The Mlsens amplifier, T6, T7, T8. T9, T10, and TI 1, consists of a pair of cross coupled

06'illv(rrcrs connected to bit and bitn. When tile word line and read line are brought up

* 12
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together, the amplifier accelerates the transition of the bit lines and restores the cell. %.

The behavior for this cell calculated by the Network C model is shown in Figure 5.

In looking at this plot it is important to note that the waveforms are not all drawn using F
the same vertical scale. elk and eq are control signals for the waveform generators.

: ellIn this experiment, bit is started at 5.0 volts and bitn is started at 0.0 volts but nOl

is started at 0.0 volts and n02 is started at 4.0 volts. Therefore, the state of the memory

cell is the opposite of the state of the bit lines.

When the equal line is brought up, bit and bitn both make transitions to 2.5 volts. %

When the word and read lines are brought up, the state of the memory cell, represented by

the charge on nodes nOl and nO2, is quickly transferred to the bit lines. Note that, in the

process. the state of the memory cell is restored. nO2 has dropped slightly and nOl has

returned to 0.0. Note that nOl did rise to 0.6 volts during the read when it was suddenly

connected to the highly charged bit line.
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Appendix III

University of Washington

Abstract

A Variable Digital Filter Design Ia 3.m CMOS

by Hyong Yong Lee

Chairperson of the Supervisory Committee: Professor Mani Soma
Department of Electrical Engineering

Variable Infinite Impulse Response(II]) Filter has been designed in a parallel form

to be used as a filter bank for preliminary speech processing. It can realize up to 8th

order [IR filter with accuracy due to its 16-bit word-length mad architecture. The simu-

lation shows it can sample up to 16 Kh:. The 25,000 transikors occupy a circuit area of

7.9mm by 92mm and it is packaged in a 64 pin Dual In-line Package (DIP). It has been

designed using 3 &m Complementary Metil Oxide Semiconductor (CMOS) P-well tech-

nology supported by Metal Oxide Semiconductor Implementation Service (MOSIS). The

testing has been performed using an IBM-PC ATt with the Northwest Instrument Sys-

tems jxAnalyst 2000.

Considerable design time and simplification of the control resulted from the usage

of the shift register array (SRA) rather than Random Access Memory (RAM) to store

the filter coefficients, data and intermediate results. This was possible due to usage of

Master Slave Flip Flop (MSFF) not only as basic cells for SRA but for 9-bit counter, 32-

bit accumulator and two 16-bit latches. The 2-to-I selector, counter reset circuitry and

differently sized buffers were the only other cells designed.

• IBM-PC AT is a tradeuark of Internationd Buaiom Machin.
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